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Introduction

This paper deals with a method of calculating the deviation of the
path of an orbiting body from a nominal or reference trajectory. The
form in which the solution is cast was motivated by a particular
perturbation problem. Stanford University is developing a ''drag-free',
or "drag-makeup'', scientific satellite which is designed to follow a
purely gravitational orbit.l The satellite consists actually of two
satellites: an inner sphere or proof mass, and an outer concentric
shell. The relative position of the shell with respect to the inner
sphere is sensed with a capacitive pickoiff. The position signals
command an active translation control system whicn fi?es jets mounted on
the outer shell so that it chases the inner sphere without ever touching
it. Thus the proof mass is shielded from gzs drag and solar raaiation
pressure and, except for very small disturbances caused by force
interactions with the outer shell, it fecllows a purely gravitational
orbit.

The problem which motivated thg present study was to determine the
effect of these small disturbances (about 10—10 to 10~? ge) over time
périods up to a year. ‘Furthermore, the answer was desired directly .in
terms of the deviation of the satellite's path from the path which would
be followed by an earth satellite acted upon by gravity only. Therefore,
the technique of perturba:ion of the coordinates was selected as the basis
of our approach.

The technique of coordinate perturbation, which began with the
work of Encke2 and Hill3 in the last century, has found increasing

use in modern times for orbital theory. The linearized perturbation




. - . . . . . 3
equations about a circular orbit (which are merely Hill's lunar equations

without the mutual gravitational terms (see equations (1), (2),(3) with

. 4
e = 0) have been applied in recent years by Wheelon, Geyling, and

7
Clohessy and Wiltshire to a number of satellite perturbation problems.

9
Battin8 and Danby »10,11

give state transition matrices for general conic
sections which also may be applied to satellite perturbation and guiiance
problems, and recently Tschauner and Hempellz have applied the linearized
Hill's lunar equations to the minimum fuel rendezvous problem.

In some typgs of orbital problems (as in the mentioned example of
determining the effect of internal force errors on the orbit of a drag-
free satellite), it is desirable to compute the perturbations of the
-coordinates when the satellite is subjected to very small disturbances
for many thousands of revolutions. In this case, the linearized Hill's
equatioﬂs are useful only for very very small eccentricities; variation
of parameter techniques do not yield an answer directly in the aesired
form (i.e., as deviations of the coordinates); and direct numerical

integration proves both costly and inaccurate, when carried out over

long time intervals. Hence a different approach is sought.

-
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The Tschauner and Hempel Equations

13
Tschauner and Hempel have shown that if the normalized orbit
equations of motinn are linearized about a nominal elliptical orbit in
a rotating reference frame (see Appendix A), they assume the very

siuple form:

7" 3
- ————  f = 23" = J
> l +ecospg * 27 o a
2t" + 1" =8 (2)
"+t o=y (3)
u u u
1 2 3
£ = — = —— = —
where 3 R’ M R ' ¢ R °’
P1 P2 p3
@=—3 P=—3 7=
w R w R w R
P, P, P are small perturbing accelerations along the u_,

1’ "2’ 73 1
uz, u3 axes respectively,

R 1is the instantaneous radius of the nominal elliptical crbit ,

©@ 1is the true anomaiy in the nominal orbit,

€ 1is the eccentricity of the nominal orbit,

W= é, the time rate of change of true anomaly,

u,» v, u are relative coordiantes shown in Figure 1, and

1 2 3
' ...g=.:.l.9_..
the prime (') signifies T

In deriving these eqmations, terms of order gz.rqz, gz— and higher are
neglected. If the cguations ~f motion in cylindricai form are linearized
as shown in Figure 2, with ¢ = %, n=¢ and { as before, equations
(1) through (3) are again obtained. Now, however, n may be arbitrarily

-3 -




2 2 2
large while terms of order £, ﬁ,, F~, and higher are negiected.

Equation (3), of course, represents simple out-cf-plane harmonic

motion and needs no discussion.
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Solution of the Tochauncr-Hempel Equations

By introducing matrix notation and defining the system state matrix

x(@) to be

£(@6)

£' @) .
"x{g) = (4)
()

n'®)

" equations (1) and (2) may be combined and written

') = F®) x@) + D@) u@) - C®
where B
4 0 1 o o) -
3 - ] .
F@) = 1 +>e cos G 0 : 2 ! (6)
0 0 0 1
C -2 0 0
\ /
/ 0 o\
+ o
7 &R - .
D) = R ) (7
0 0
o 5
w R)
\ w
: -6 -

- o - ey — - C—— -

VT s e

@ e

N T XV S RPN



{ mlf

and

Pl(e)
u(@) = . (8)
Pz(e)

14
It is well known from the thecry of Floquet (see Appendix B) that
a system governed by equation (5) where F(9) = F(9 + 271), has a state

*
transition matrix, X(g, 90), which can be written as:

X, 8,) = RG, &) LBO - 6,) (9)

i

where R(B,’Go) 2B + 2=, 60) is a periodic 4 x a matrix, and

>

B ,j; £n X(e0 + 27, 90) is a'constant 4 x 4 matrix

27

whose eigenvalues determine the system stability.
The unforced part of equation (5) is said to be kinematically similar

Ato the constant system
w' = Bw , - (10)
F(.y, KRG, Qo) and B are related by
B = R'lke, é )F(@)R(é, 6 ) -R G, 8 JR'G, 8) , au
o o o o

and equations (10) ana (11) are known as the Lyapunov reduction of

equation (5). By an apprppriaterlinear constant transformation

z = Qw _ 12)

*Formally, the state transition matrix of an nth-order linear system of
differential equations in first-order matri< fcrm is an n x n matrix whose
columns are n linearly independent solutions of the free equation, such
that X'(@ 6o) = F(0)X(6, 05/ and X(9,, 6,) = U, the unit or identity
matrix (see Appendix B).



(where Q is « constant 4 x 1 matrix)

equation (10) mav be transformed into its Jordan normal form:
z' = Az (13)

where

A = QBQ (14)

The eigenvalues of A, together with the structure of the Jordan blocks
determine the stability of the free solution (u(9) = 0) of equation (52,
and it is possible to give the state transition matrix, X, eo),

directly in terms of A:

XC, 0) = IO ER e R (15)

where x@) = P(B)z({©). (See Appendix B).

The periodic part of the state transition matrix, R(, 90) is given by
. -1, - R
R(5, 60) = P(9)P \60), (186)

?nd furthermore
Q=P (50) . (17)

13
It has been shown by Tschauner and Lempel (who have obtained the-
-1 .
matrix P “(3) in closed form), and also by the present authors, that
equation (10) is kinematically similar to equations (1) and (2) with the

Jordan canonical form of B given by



0 ] 0 0
0 0 0 0

A = (18)
0 0 0 1

0 0 -1 0

\ /

It is rather intercsting to ncte that A may be obtained by finding

the Jordan canonical Jorm of BO, where B is the matrix F(g) given
o)

* ok
by equation (6) with e = O.
/ \
0 1 0 0
3 0 0 2
3= (19)
— 0 0 0 1
0 -2 0 0
\ /

In fact, equation (5) may be factored into the form

x'(@) = [Bo + e G(3)]x(B) + DBIu() (20)

where G(g) = G(@ + 2m),

, | ) -

0 0 0 0
_ -3 cog 6
G@) = T 7 e cos 5 0 0 . (21)
0 0 0 0
0 0 0 0
\ | /

*The normal form (equaticn (13) with A given by equation (18)) corresponds
to two decoupled seconu-order systems: & pure inertia or 1/s2 plant and

a harmonic oscillator with a natural period equal to the orbit period. The
1/s2 plant may be interpreted physically as motion in a similar coplanar,
coaxial ellipse with higher or lower total energy. The harmonic oscillator
corresponds to motion in a coplanar ellipse with the same period, but

with different eccentricity and/or orientation.

**This remarkable property is not usually possessed by even the simplest
of periodic systems. Compare, for example, Mathieu's Equation,
8 + uoz(l - ecos 2 wt) g =0, -

-9 -



The matrix P

(=) 15 gaiven by Tschauner «nd Hempel:

4 1 _
] Py 3 9
—2q1 + oeu -Cu 0 -9,
—é € Sih g —é(l + & CTOs 5) %e cos 6 0
-3(3 + e cos g) 0] -4 e sin g ~-3(2 + e cos §9)
\ /
Wilos ol
!) — -
¢, = é[l - 1 +2e7) l—ez]sin g - (2 + 3e cos § + ez)sin lx, @23)
3/2
-1 2 1 2
P, = 6(l + 3Jl—e ) - 3e|_1 - -e€7) Jcos g
+ é [+ 2e2)*ll-e2 - 1ljcos 2 8 = & u sin = ,, (24)
1 2 2 . 1l . 2 ;
4 = 3a (2 + e \1-e” - 2isin g + 5 (1 + 2e")y1-e" -1 s1n2g
+ (1 + e cos Q)ZSin_lx, (25)
2
q, = (1 + ¢ cos 3)7, (26)
L= sin g(1 + e cos 8), (27)
. . 2
sit e + (1 —-41-e cos 9]
\ = sin @ | ( ) 8 | (28)

l + e cos 6

If 9 1is chosen to be zerc, then

- 10 =

(22)

1




p (0)

P(0) -

so that

\

From equations (14) and (17)

-1 +e)(2 + e)

3e

(1-e) (1-e2) 32

(l-e)2 1-e2

B(e)

(e+l)[-l+(1-e)2JI:;2j_

1
3e 3
0 0
-3(1 +e) le
0 0
_ 2 + e 0
1l + e
0 -2
(1~e) (1-e2)3/2
o -2[1-(1-e) 2N1-¢2]
e(l—e)2 1-e2
3 + e 0
1l + e
-1
= P(O)A P " (0)

- 11 -

0
-(1 + 0)2
29)
0
-3(2 + e
/
2(1 + e)
0
(30)
0

-2(2 + ei)

(31



R

(z€)

(@ + Z)o-
f= —
z ;wﬁo 1o o
9-T B+ O~ - og— - -
. Am £-2) Am € Nom o2z-2)
o= o9—
N\mAN 1) (3-1) o
9L~ 99-og -~
c € z 9-92 -2
Aw + Mv@l

(o+2) (9+1) - 0

NOIﬁ (e-1)o

[4
4]
WWIAvﬁm®+N®+®m|mVlAmwlemlmm|mv
(o=1) (o-1)
o g/€ % DD
mmlem|®mlm
(® + 1) 0
g ”
= (9)d

12 -




and also B = B(0).
It may be seen by direct differentiation that the solution to

equation (3) is

o
x(5) = X, eo)x(eo) + X(g, 60) f X

[0}

-1(1, QO)D(T)U(T)dT (33)

where x(eo) is the initial value of the system state matrix and
X, 6 ) = R, 6 )€ = P(glre’ o’P "(6) . (34)
o o o

(This solution may also be obtained by variation of parameters, See
Appendix B) If one attempts to use equation (33) directly to determine
the effect of small perturbing accelerations over many revolutions,
serious numerical difficulties are encountered wnich result bcth in loss

of accuracy and in excessive computation time,

- 13 -



Solution for Constant, reriodic, and Almost-Pericdic Perturbing

Acceleraticne

As in the case of computing perturbations for a drag-free satellite,
it often happens that perturbing accelerations are constant or periodic.
It is ‘hen possible to compute their effect at any future time merely
by computing their effect over one orbit revolution. If the disturbing

acceleration has the form

u@) = u + 2n) (35)

it can be shown (see Appendix C) that the solution to equation (5)

[that is, equation (33)] can be written

N
x(@) = X(@ -2 N, 6 )CN x(@ ) + X(@ - 21N, ¢ )(Z Cl‘) 1
o o (o) 1
k=]
6~2nN
+ X(@ - 27 N, 90) f X-l(’l’, GO)D(T)H(T)dT (36)
e
(o)

where N 1is the largest number of complete revolutions in (g - eo),

C @ X + 2%, 8 ), and
o o

90+2n

1. = X—l(T, QO)D(T)U(T)dT. (37)

The solution as given by equations (36) and (37) requires integration
over a maximum of one orbit revolution, regardless of the actual number
of orbit revolutions contained in the range of interest (g - 90). Thus
the difficulties mentioned in the applicatioa of the solution in the form

given by equation (33) are overcome. The restriction of the disturbance

- 14 - -
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to constant or periodic in (@ case can be relaxed somewhat, If

u(@) = u(@ + 27 M) (38)

where M is an integer, it can be shown (see Appendix C) that the

solution [equation (33)] can be written

r-1
N N-k M
( — - - 3
x{9) = X(o -2 N, 9 )C" x(g_) + X(6- 27 X, g_) (z C ) I,

k=0

6-=2nrM

N-rM -

+ X -2 N, §)C T x 1, 6 )D(D)u(1)dr (39)
eO

where N is the largest number of complete revolutions in (g - 90),
r is the largest integer < N/M,

C=X{@ + 27, 0 ). and
o o
90+2fT
| X (1, eo)D(T)u(T)dr (10)

In this case the solution over any interval (g - 90) requires integration
over a maximum of M revolutions. Thus the constant r defined above
is a figure-of-merit for the solution in this form. The larger r, the
more relative value equation (39) has over equation (33).

One further generalization of the form of the perturbing acceleration

can be made. If instead of equations (35) or (38) we have

u(@) = u(g + ©) (41)

where © #2n M for M=0, 1, 2, ...., the solution may be approximated

(again see Appendix C) as closely as desired by selecting an integer K

- 15 -



such that

K &= oM 42)

for some inceger M. Then the solution to equation (5) is agair
equation (39), with N, C, and 12 as defined, but with r an integer

such that
rKe<2n N< (r+1) Ko (43)

In this final case integratiorn is required over a maximum of M
revolutions. Of course, the larger the szlected value of M, the
greater the accuracy obtained in the approximation of equation (42).
The usefulness of the solution, in this case, is dependent upon the

nature of the actual problem,

- 16 =



e,

Restriction of Initial True Anomaly to Zero

If the initial value of the true anomaly is taken to he zero (60 = 0),
no real restriction of the genéral problem is imposed. This is so because -
stipulation of 90 = 0 simply requires a compensatory adjustmeat in the ‘
initial value of the system state matrix x(@o). Then the solution for

perturbing accelerations of the form
u(8) = u(6 + 2¢7) (35)

can be written in a manner especiallyv adapted for rapid, accurate evalu-

A

ation. If © 0 and x(GO) = x, equations (36) and (37) become

o]
N \
N K L.
x(6) = X(3,0)X (Zv,O)xo + X(0,0) jz X (2r,0))1
k=1 /
°
+ X(0,0) ]ﬂ X "(1,9D(Du(dr (44)
0

where N is the largest number of complete revolutions in 6,

o= 6-27N , (45)
21
1 =f X" 11,00 D(Du(ndr (46)
J
’i 1 0 0 \) ‘\
Zbne(2+e) ) o  —Smellre)
(1-e) 2Y1-e2 (l;e)2 1_92 "
X(27,0) = (47 -
-617 (2+e) (1+e) 0 ) -677(1 +e) 2 )
(l-e)zdl—e2 ' (1-e) 2yl -2 . i
\ 0 0 0 1 )
-17 - f’_



where

- (1,1)
(1,2)
(1,3)
(1,4)

(2,1)

(2,2)

(2,4)

(3,1

(3,2)

(3,3),

4 + ¢ ~ 3co0s

1 + e

sin 5 (1 + e

1 + e

(2,3, = (4,3

2 + e —_cos

1) (1.2)
1) (2.2)

D) (3.2)
1) (4,2)
g ’

cos ) '
=0 ,

sl2 + e cos g)

1

3e(2+32 cos o + €2) (s~sin ~

+ €

1

(4,

(3.1

(4,4))

1) -'(3+6e2)\[1—e2 sin g

¢

(1 -e)(l -e)

2. 3/2

(1&)

(49)

(50)

(51)

(52)

(53)

-1 2. . 3 2
382 sin ;(l1+e cos 3) (-sin "))~ J -e212e+93-(1-e )cos g-(e+ze )cos gl

3e(l+e cos )) (0—91n )) 4 l-e [(2+e )sln g+(e+2e )sin 5 cos :

(1 -~ ey - ez)?’/2

2 o =]
3(2+3e cos g+e ) (g=sin ")) -

(1 -e)(1 - e2)3/2

(6+3e)

sin o

2
3e sin n(l+c cos 3)(J—51n \)-J -e [2+e —(2-ze)cos g~ (2e+e )cos<gl ,

Q- e)2

l - e

x

(54)

b

(55)

(56)

(1 - )21 - e2

- 18 -

(57)

(58)
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T R

- 2, 2 .
3(l+e cos ) (s-sin 7)-Nl-¢ | (4-e)sin ::(2e-¢ )sin 5 cos ]

(3.4) = >
1 - )~ - a2
( c) Yl e (59)
a1y - 6(cos : - 1) ’ (60)
1 + e
2si Y { s 7
(4,2) = sin (1 + e cos 1) ‘ (61)
1 + e
4.4) = -(3 + e) fmggos (2 + e cos =) ’ (62)
i+ e
and
o 2
sin sie + (1 - dl - e )cos o]
= — —_— . (63)
1l + e cos

If J is the Jordan canonical form c¢f X(2x,0) (given by equation (47) ),

then J 1is given by

A}
4 1 2+ 0 0o
0 1 0 0
J = ) (64)
0 0 1 0
0 0 0 1
\ /

and (see Appendix B)

X(2x,0) = P(O)JP_l(O) (65)

where P(0) and P—l(Q) are given by equations (29) &nd (30). Notiﬁg
then that

xN(zn,O) = P(O)JNP-l(O) , (66)

- 19 -



and defining

N
sy gt (67)
Lt

-1

e

cquation (44) can be written in o for.o which is convenient lor calculating

x( ) when N s large:

x(p) = X(r.O)P(O)JNP—l(O) + X(d,O)P(O)SP—l(O)I
+ X(;J» J[ X—l(T,O)D(.)u(t)dt (70)
0

where N 1is the largest number of ¢ mplete revoluticns in 2,
X_l(‘,O) is obtained irom equations (48) through (63},

D(r) is ziven by equation (7),

u(7) is given by equation (35),

( 2-N 0 0 \
0 1 0 0
N : ’ C(71y
0 0 1 0
(L © 0 0 1
( N N(N+1) n 0 o\
0 N 0 0
S = .- (72)
0 0 N 0
0 0 0 N
\ /

- 20 -



Sampled-Data Solution

If in the general solution (equation (70)) ¢ 1is restricted to
zero, an expression is obtained which represents sampled values of

the perturbed motion taken atl intervals of 2:x:
N -1 -1 .
x(2n N) = P{0)J P (O)xO + P(O) s P (01 {(73)

where, from equations (29), (30), (71) and (72) we obtain

/ 1 0 0 0
6en(2+e)N 1 0 _ 6eﬁ(1+e1§m
- 2 ; 2
(1-e)"y1-e2 (1-e)“¥1-¢2
P©)3 P 1 (0) - (74)
_ 6n(1l+e) (2+e)N o . _ 6n(1+e)2N
20 5 ! 2
(1-e)y1-e? _ (-e)*{1-e

and
(’ N 0 0 N \
_ 3en(2+e) (N+1)N N o - Ben(1+e) {N+1)N
2 -,
(l"e)2 1-¢2 (1~e)“J1~e*
p0)sE"Y(0) = :
- _ 3n(l+e)(2+e) (N+1)N 0 N - 3x(l+e)2(N+l)N
2
(1-¢e) 1-¢2 (l—e)2 1-e2
0 0 0 N
\ /

- 21 -
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and where I

x = x(0)
o

is defined by equation £46),

the initial value of the system state

matrix,

The T-matrix has been evalua‘ed (primarily by contour integration)

for the case of accelerations
thaf is, for acceierétions of the form
a
£ |
- u(b) = (a,,
. S
a
L

a
n

constant)

constant in the rotating reference frame;

(76)

The result of this evaluation is contained in Appendix D. Using this

result one obtains fo: accelerations described by equation'(76):

//

(4-e)rN

2 '3/,
(1-¢) (1-n2)3"2

3e(e2+2e42) N

a

'S

i

\

6e7t2N2

a

R(o)sp'l(o)l

1

r——e.

2
(1=e) (1-€7)

[y a .
32 E (Ze)(1-e2)2 1

2
k/p

(e2+10étg)nN

(1-0)2 (1-¢2)372

'3(e2—2e—2)nN
(1-c2)572

where k 1is the gravitational field constant

’

a
al

[¢

€

’6n2N2' : .
i1-e)2 -2y N

p 1is the semilatisrectum of the nominal ellipse -~

A closed-form of the I-matrix has alsp beeh,obtained for

I8}

)

R



B I
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~ Bl B

" accelerations of - the form

u(f) =

where Kl and K2 are integers,

<, ‘and c, are arbitrary complex

This result is also presented in Appendix
using the two forms of the I-matrix (for

accelerations), to derive an appropriate

which can be expanded in a Fourier series

(78)

constants,

D. It is pcssible then,
constant and for periodic

I-matrix for .any disturbance

in true anomaly.

(t



Application to the Drug-Free Satellite

As mentioned in the Introduction, the proof-mass or inner sphere
portion of the drag—{rcc satellite follows a pure gravity'orbit excep”
for very smull perturbations caused by force interaétions between the
inner and outer satellites. The majority of these force interactions
are ecssentially fixed within the satellite. When the satellite is main-

tained in a locally-level orientation these forces are then fixed in the

x

rotating reference frame and can be described By equation {(76) , i.e.,

a
A
(ag

a

u(g) = ‘constant) (76)

a
y

i
ko' < - ":‘

Plots of typical %erturbed motions, assuming zéro initial conditions, re~ =
suiting from accelerations of this type (for selected yalueé of nominal
orbit occentricity; are presented in Figures (3) through (6). iIt is iﬁ—
teresting to compare these plots with F?gures (4-5)'tﬁroughr(4—8) of

Reference IS,‘which reprcsent the solutions for zero eccentricity. As

would be expected, the resultsﬁfor e = ,Ul are almoét identical to those

for e = 0, but do exhibit the trend or distortion shown amplified in

the plots for e.= .1, ,The'effect of the secular terms of the solution

are most ¢asily obtained through the sampled-data solution of equation (73).

Again ignoring initial condition effects, -and selecting for example

e = .01, then, using equation (77), one has
' ~ 4N :
- : E(27N) .= l‘——z-a 79)
: o - L okpe M -

- 24 - ' ’ ‘ .
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n(zN) =o- g 2l (80)

~ -10 2 - !
It ag = un ~ 10 ! m/sec , p~ 100 miles, plus the radius of the Earth,

N = 6000rev (= 1 year), and using the basic relationships x = ¢R, y - 7R,

it is seen that

20 feet (81)

x(1 year) = 6 m

y(1 year) P "105 m = -60 miles (82)

These results verify those of page (126) -of Reference 15.
The drag~-free satellit. may also be oriented 5o that it raintains

its oricntation with respect to inertial space. Then the perturbing ac-

celeration would be cssentially fixed in inertial space. If it is resolved

into a component ago lying along the line of apsides of the nominal

orbit and positive outward (away from the focus), and a component aqo
*

perpendicular to ago in the plane of the nominal crbit, and pcsitive

in the direction of motion, ther the acceleration vector becomes

a ccs + a sin
“go 6 no 6

u(g) = (83)
-a. sin g + aqo cos g

. go

where a o and a, are constant. Exmples of typical motion are pre-
)

sented in Figures (7) through (10). Again it is interesting to compare

these results with thosc for zero eccentricity contained in Reference 15

* .
As was noted previously, out of plane motion is simple, decoupled,

harmonic motion, requiring no cdiscussion.

-29~.
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Application to che Problem of Golar Kadiation With Shadowing

As an example of how periodic disfurbances might arise with an or-
dinary satellite, consider an approximate solution of the soiar radiation
pressure problem where the sun is assumed to remain fixed with respect to
'the ornit plane. If this perturbation is desired over a relatively few
orbit periods, then it is reasonable to regard the disturbing acceleration
as essentially fixed in inertial space. The reference orbit woulda, of
course, be perturbed by the eartn's oblateness, but over a tew orbit
periods this will not result in ve2ry great 1elative motion-of the sun,

I7 91 is the true anomaly when the saiellitc enters .the shadow,

and 6, the corresponding exit value (see Figure (11)), then

a§O cos g + aqo sing| - (0 < e < ei)

u(g) = ) (84)
:ago sin 9 + aqo cos qn (90 <@ <20

u(@ = 0 , g, <6<8 (85)

—
where the acceleration vector a has been resolved as was done previously

for accelerations fixed in inertjal space.

- 35 =
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FIG., 11. SOLAR RADIATION WITH SHADOWING.
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To determine

Pl(e)
u(g) = , O (86)

Pz(e)

[ A
D
I A
™
a

it is possible to expand u(g) as a Fourier series. If this is done then

i

l\DlP—'
=Y

PI(G) {ago(51n 91 -~ sin 90) - ano(cos 6, = cos 90)}

sin 29. - sin 2¢g cos 2. ~ cos 2¢g
a 2n+p9, -9 ) +a E © - a = % cos ]
i ls) o} ’ 2

ko

+
|~
2|

P o

a (2n + 91 - Q) - a - a

no

+
| b=
|
Pt
O]
[y
=
[\
(05
(W
1
n
e
=]
8
o
(¢
e}
)]
N
D
e
|
0
Q
n
[\
D
N ot
n
poss
=
@

(n +1) + (n - 1)

+
N
Al
Nk

sin (n+l)9i - sin (n+l)e0 sin (n—l)ei - sin (n—l)eO
ago

2

=
L

cos (n+l)ei - cos (n+1)9O cos (n—l)ei,— cos (n-l)ao }
, cos ng

- aqo (n + 1) : (n - 1)
1 5; cos (n+1)9i - cos (n+1)9o cos (n—l)el - cos(n-l)go
T 2% ago (n + 1) * (n - 1)
n=2
“[sin (n+l)9i - sin (n+1)eo sin (n-l)gi - sin (n-l)e0 :
+ ano T D - - D sin ng-.
(87)
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P2(9)

L { (sin O_ - 5in Q ) +a (cos g, — cos 9 )
25 to i o
1 sin 29, ~ sin 29 Ce .5, = cos 28
— (27 + 9 -8) + a = - © +a 1
27 10 o 0 2 o 2
] sin ZQi - sin 290 cos 291 - cos 2p
2 (21 M 9 - 6‘o) * a(";o 2 - aT]O 2

b sin (n+l)9 ~ sin (n+l)g sin (n-1)g5., - sin (n-1)g
1L Z . o, : o
27 10 (n + 1) (n - 1)

n=2 /

cos (n+1)9i - cos (n+l)9o cos (n-—l)ei -~ cos (n-1l)g

ago (n + 1) B (n -1) cos ng

oc
1 zz Si? (n+1)ei - cos (n+1)9O X cos (n—l)ei - cos (n—l)eO
2+ &0 (n + 1) (-1

n=2

sin (n+1)9 - sin (n+1)90 sin (n~l)ei - sin (n—l)eO
ago (n + 1) B (n - 1) sin ng
(88)

Figure (12) is a plot of perturbed motion

the following conditions:

In the numeric

19th term

ol

over 4 orbit periods under

= -a (the sun lies along the line of apsides)
e = 0.01
6; = 135°
6, = 225°

(n = 19).

- 38 -

integration the Fourier expansion was carried out to the

It should be noted that the parameters selected

cos @

sin g

STt g



were chosen merely to provide an idea of the nature of the solution,
rather than to describe some actual orbit condition. The problem of
calculating actual shadow-entry and exit angles is discussed in the lit-

erature (cf. Reference 16) and is not within the scope of this paper.
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Application to Inertial Guidance

The basic relationship of inertial guidance is that geometric
acceleration is equal to the ot tput from an ideal accelercmeter plus

gravitational mass attraction. That is,

11
- - =

r f+g

-

r is the position vector of the vehicle,

-)

f is the output of an ideal accelerometer on board the vehicle,

5 .

g 1s the gravitational mass attraction vector, and

overscript (*) signifies d/dt in an inertial frame.

An inertial guidance system computer is mechanized such that it obtains
the solution to equation (89) by solving the Ideal Mechanizauion Equations,

(90) and (91).
“WXV ~ ' (90)

X r : (91)

ne>

I
-
where r,

v
a?is the angular velocity of the computer frame with respect to .
inertiai space, and

overscript (°) signifies d/dt in the computer frame.
It has been shown elsewhere20 that from these three basic equatiras, by
perturbation analysis, one obtains the Platrorm Misalignment E:rg?
Equation (92) and the Position and Velociiy Er:br Equation (93) for an

Inertial Navigation Systea ... elliptical orblt-

llifl I



where W

=L

o] ®

“.

= - = (92)
g
— « o . , ;/ — -— — : —— — - —_—
tro~ Swi L ?J ro= - T4 Kg o T+ b + H)‘ 230 X v
t (93)
— c X /— C I
- — 1 - — - —
+ K v + - - (K . r> -~ 3w A 1
v ot p

is the vector approximating the small angle which rotates
computer into platform axes,
the

is diad representing stabilizatio» gyrc scale factor error,

t

the stabilizaticn gyro drift rate or bias error vector,

[W

ﬁ

is the first order approximation to the error in r,

—)
is the Shuler frequency corresponding to Irl,

is tke upivérsal gravitational field constant,
representé accelerométer bias,

represents raundom accelerometer'errors,

is the diffgrence between computer -~ngular rate and platform
angular rate (£o first order),

is the “‘iad representing first integrator scale factor error,

*he diad renresenting second integrétor scale factor error,

. and

signifies differentiation in an inertial frame,

Lompqrmson,of‘eqdation (93) with equation (Al0) of Appendix A reveals

. the intsresting fact that the hoﬁogenegus form of the Position and

~ " -Velocity Error Equation -f an Inertial Navigation System in slliptical

> -

» Equation

-

l{ orbit)is,idénticai’to the homogeneous form of the Basic Perturbation

Linearized-ébgut an elIipficéL,orbit.

It follows then that

- 43 -
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" bias correépbnds to a constant input to: the equgtian‘ofrﬁotion.

e
. . .

ejuation (93) can be transformed to the Tschauner~Hempel Equations,

If

A
r = oy s (94)

m

coordinatized in a locally-level reference frame, and

e

r 5&; (95)

o
m
viv

o4
<

It

)-‘
w
=3

o

N

then equation (93) becomes equations (96) through (98):

" 3

— :r - | I
Bt T 7 o cos 5 OF B’ =a (96)
256" + on" = £ ' (97)
58" + 8¢ =7 (98)

where e .1s the eccentricity of the elliptical orbit in which the
guidance system ic operating,

9 is the true anomaly of i1he vehicle,

P p . P
gL __2 . __3 -
- 2 y 2 ’ - 2 B
Wwr - Wr : wr

P] P2, and P3 are the coordinates of the error sources,

W =64, the time rate of change of true anumaly, and

' d 1d
3 1 3 3 -F-3 — T wem e
prime K ) S1gn1£1es“ l T

If{ for example, the accelerometers of the Inertial Navigation

3ystem are maintained in a-local-level orientation, then accelerometer



Figures (3) through (6) then may be interpreted as plots showing the
propagation of system errors in nondimensional altiiude and cross-track

due Lo accelerometer biss, when
b’ = [ ° . (99)

The sampled-data sclution discussed previously is of course valid too.

Hence, if a, = 10—4ge, an == 10—4ge, r = 106 miles plus Earth radius,

e = 0,01, using equations (79] and (80) one obtains for N = 1 orbit,

X = r ¢ ~ 4 miles (100)
&Y = r 57 ~ -10 miles (101)

_"'3471»->
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APPENDIX A. DERIVATION COF THF oCHAUNER~HEMPEL EQUAT1ONS

In this appendix the standard derivation of elliptical relative
motion is reviewed for completeness and to establish notatien. A
derivation of the Tschauner-Hempel equaiions is also given.

Consider the relative motion bhetween a reference ohject in un

elliptical orbit, described by position vector R, and a nearby object

in a slightly different orbit, described by position vector ;L (See
Figure 13). The relative position ot the second object with respect

to the first is designated by the vector  3 so that

e
R+p=r

(A1)

Satellite
Sz‘z_zrfc'n 9 Pocnt

Reterernce £ipse

Figure 13, Coordinate System for Perturbation Eqdation

For simplicity assume koth objects start together in space and

time as showa. Considering that which makes the two orbits different

to be a perturbing acceleration 73: the equations of motion can be

written:

R = - — 5 (unperturbed body) ‘ (A2)

v



I -

- k ? s

r = - _f3 +a (perturbed body) (A3)
r| i

I
where k 1is the gravitational field constant, and superscript ()
signifies differentiation with respect to time in an inertial frame.

Equations (Al) and (A3) combine to form

11 II k(R ) -
R o 1—3' —>13
R +p

- =
By taking the sguare root of the dot product of (R + p) with itself

it is readily verified that

= == 2 Z_ﬁ)-_) p2 - 8/2
IR + 5] 7 = IR + ==—£ 4+ )] (A5)
2 2
R R
2
If terms of order (%) are neglected as small compared with terms
7)
- of order (R ,
-3 ~ = .o -~ 3/2
l§*+g)->13:R3(1+2R p)
2
R
= R-S [1 - 3 (2R s + higher order terms]
2 R 2 ’
(A6)
- -
. -3 ~ =3 .
e Repl™ iR (1 - Rep - (A7)
2
R
With equation (A7), equation (A4) becomes
: R
T 8o x@+pr3 (1 -3y L2 (48)
R P . RZ

Y - 46 -
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Subtract (A2) from (A8) to obtain

II T -~ -

- 3k R, = k -~ 3k o —

e *—7;—";)—9-—3——3—p+'—§r—é—‘;—p+21 (A9)
R R R R R

Neglect the third term on the fight-hand side as small compared with the

first wwo, and the basic perturbation equation rcsults

I1
o = - o+ R.o) R+ a (A10)

If o is the time derivative of ¢ taken in the rotating refercnce

-3

frame and wL/f is the angular velocity vector of the rotating reference

frame with respect to inertial space, then

i L
b =g + W > (A11)
O —’p + wL/I Xp g
and
IT LL L — -3 -I—’a - - -,
S o=« z&/l X p o+ 20 0 X p o+ Wy xup g % o) (A12)
In the rotating reference frame, if we define
FAND 4 A Nz
=55 NS5 S5, (A13)
X 4
....)
p = y = R M . (Al4)
z 6
Also in the rotating frame we have
Ry - P 0 :
. 1 .
-3 - -
= ol P P, oWy T 0 . (A15)
0 P3 W



Combining cquations (A9) and (A12), resolved

obtains the scalar equations

e ( 2 2k ) _ 0% .
X f1s + 3' X Yy ;ly
R
o 2 _k . .
y - (w )Y o+ 2ux o+ oax
R
.e k
Z 4+ o Z
3
R

in the rotating f{rame,

where (') signifies differentiation with respect to time.

The following identities can be obtained by differentiation:

WR o= % - ew sin © .
1 + e cos ©
2 1" ,k 2
w R :x+/-—§—.)>x
\' R
d 1 d
whe re . s ifies 4o o L9
ere (') signifies q S at

Expressions identical in form hold for n and ¢{. Combining these

equations with equations (Al6) through (Al8), and noting that

«

2 .
29 e sin ¢

';): ) :.)' I e —————me
l1 +e cos v
yields )
sz#'—gE;-mFmp= P
i 2 1
R
2 ] 2
w Ry + 20 R’ = P
2
2, 2
w RC" + wORE = P,

- 48 -
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(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)



Noting that

the Tschauner-Hempel equations are obtained:

.’JUIDT‘

5

2
i R

1l + e

COs

SI\J
9]

P

il

€
N
=~}
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(A25)

(A26)

(A27)

(A28)
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APPENDIX B, REVIEW OF FLOQUET THEORY

In this uppendix the standard results of the theory of linear dificreintial
17,18,19 . .
equations are reviewed for completeness and to establish the

notation.

Theorem: The nth—order linear inhomogeneous system
x'(0) = F(8)x(U) + D(OIu(8) ; x(@o) = Xo (B1)
has the general solution

o
x(8) = X(6, 6 )x ~+ X(B, 6) ‘/(‘ X—l(T, 6 )D(7t)u(r)dr (B2)
o’ "o ) o

6
o

where X(6, 90), the n x n state transition matrix, is the solution

of
X'(6, 6 ) = F(O)X(6, 8 ) ; X(6, 6) =U (the unit matrix) (83)
(o] [0} (o] (@]

Proof 1: Substitute B2 into Bl.
Proof 2: Assume the solution x(6) to be made up of the complementary

solution xc(e) and a particular solution xp(@):
A(0) = x (B) + x_(O) ’ (B1)
c p

t - . ; . .
The n n-ordered homogeneous form of equation {(Bl) has n special linearly
independent solutions which can be arranged as columns of an n x n matrix

* .
Y, 90) which satisfies equation (B3). X(Go, 90) was chosen as thc

*X (0, 60) is known as the matrizant, fundamental matrix, state transition
matrix, or metrix of partials,



unit matrix so that an arbitrary complementary solution would be given by
x (0) = X(9, 0 )x (B5)
c o o

In order to obtain the particlar solution assume the constants, Xo’ of
the homogeneous solution are now functions of 6, and call these

functions c(8).
x (6) = X8, 6 )c(0) (B6)
p o

This apparently arbitrary assumption was first made by Lagrange and

was motivated by a desire to represent the eftects of planetary
perturbations in the solar system as variation of the orbit elements.
This assumption, it turns out, gives the exact solution for the special

case of linear equations. When (B6) is substituted into (Bl) we obtain

X'c + X¢' = FXc + Du (87)
or
. -1
c' =X Du (B8)
-l .
since X = = FX. Ecuation (B8) may be integrated immediately to obtain
]
-1
c(8) = f X (1, 8 )D(1u(r)dr (B9)
C] . .
o

proving equation (B2).
If F in equation (Bl) is a constant matrix then it can be seen

that

GF(G-GU)

X(6, 90) = (B10)

O by



| BRCC R iy

where for an arbitrary n x n matrix A,
e = = A (B11)

Lemma: If in the system (Bl), F(6) = F(6 + 2r), then for any integer R.
X(6 + 27k, 6 ) = X0, 6 )X (6 + 21, 6) (B12)
O [0 (6] O

Proof: X'(6, Go)‘% F(92)X(8, 60) ; X(QO, 90) = U (the unit matrix)

(B3). Since this must hold fo:. all &,

X'(@ + 2m, 90) F(6 + 2r)X(6 + 2nm, 60)

F(B)X(0 + 2n, eo) (B13)

since F(6) = F(6 + 2n). The columns of X\6 + 2m, 60) are n linearly

independent solutions of the homogeneous part of (Bl), and therefore,

each of these columns, xR(l < R < n), 1is given by Xp = X(o, Go)cR

where for each R, ¢ is an n x 1 column matri. of constants. Let C

R
be an n x n matrix whose columns are the CR' Then
° X(6 + 2nf’90) = X(8, 6)C (B14)

Since the columns of X(6 + 2=, 90) are independent, C.-1 exists,
Equation (B14) must hold for all 6. Specifically it must hold for
6 =06 :
OA
x(90 + 2x, 90) = X(Go, GO)C (B15)
Since X(Go, 60. 2 U, C 1is known and . i

X(0 + 2m, 6) = X(8, 6 )X(8  ~ 2=, q} o (8186)



&

Equation ‘B16) must also hold for all &, Specifically it must hold fo:

6 =68 + 2m:

X(0 + 4n, 6 5 = X(6 + 21, 6 )XG_+ 2%, 6 )
O (8] (o} O

X(0, 6 )X°(5_ + 2m, ©) (B17)
(o] (¢} (o]

i

By Jnduction,
X(6 + 2nR, 0 ) = X(B, € )XR(G +2xn, 6) (B12)
) o o o

For the balance of the discussion it will be assumed that
F(8) = F(6 + 2n).

Define a matrix R(8, 60) by

R(6, ©) = X(6, 30)6-8(6-90) (B18)
where B is a constant n x n matrix not yet specifiea., Then
x(6, 6) = Rig, 6% (B19)

(note the similarity with equation (B10)), Then using (312):

"

B(9+2n—90) B(6~90)

R(6 + 2xn, 6 e = R(6, @ e R(®6 + 2xn, 6 )EB?“ {(B20)
o o o o

Now define B to te

2

1 ,
y 1 ¢
T Zn X(Qo + 27, 90) | 121)

5

then from (B19) and (B21):

e

. B2nx B2x ~
- X(, + 21, 6) = € = R(8_ + 2%, 6 )¢ 22)
e R(Go + 2%, 90) = U (the unit matrix) (BL5) - -/

L



¥

Ll

When (B23) is subs<ituted into (B20) we obtain R(O + 2m, 60)

so that R(9, 90) is a periodic matrix. low let

wl BO-6) oy L oy

Ther X' = FX inmnplies

R'W + RW' FRW

R'W + RBW = FIW

.'. R' =FR - RB
and h B=R'FR-RR

= R(B, 0 j,
O

(B24)

(B25)
(B26)
(B27)

(B28)

This;result{ where F and R are periodic aiid B is constant, is

-

called the Lyapunov rcduction of equation (Bl)f

Let A be the Jordan canonical form of B; i.e.:

A:%¢1

" then - '
’ A (6-€ )
W = ~1 o)

and

X0, 6.) = R(8, 0)q7 Mg

If the transformation P(§) is introduced so that

2(8) = PH(O)x(9)

- 54 =

_— . _l. .,
BO-6) | TG0} o1 .

. -(B29)

(B30)

(Bsi)-

(B32) .
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where

27(8) = Az(3) ; z(6 ) = P 1(8 )x
O O (8]

then
6- - -3
2(6) = eﬁ& 90) (0) = e./\.(6 90) P (6 )x
(0] (o} (o]
Combining (B32) and (B34):
@) = 1@ plie )y
o’ "o
From (B3§) it follows that
x0, 6) =p@ %) p 1)
: o o
If We>take
NS
Q=P (Go)
then it follows from (B31) that
R(B, 90) = P(9)Q
. -1
= P(B)P (6 )
o

(B33)

(B34)

(B35)

= (B36)

(B37)

(B38) -

Equation (B36) is the form of the state transition matrix used in the

-

-basic text.
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APPENDIX C. DERIVATICN OF A SPECIAL FORM OF THE

SOLUTION TO LINEAR EQUATIONS WITH PERIODIC COEFFICIENTS

The solutimrn to

x'(6) = F(©)x(©) + D©ue) ; x(G) = x_ 1)

has been shown to be (see Appendix B)

R
-1
x(@) = X(, GO)XO + X(6, 90) 'j X " (T, eO)D(T)u(T)dT (c2)
%
Define o such that
cSe-NT-g (c3)
) a
' — ._-...__—} " 4 et > &
e G+ T G+(N-IT  O.enNT 1\ G+ (V)T
[
Lemma: 1f F(8)} = F(9 + T) then
X©, 6) =X©® +0, 6086 +T, 0) (ca)
' Yo o * Yo o ' Yo

Proof: In Appendix B it was established (for T = 2n, no restriction)
fhat
X(6 + NT, 6 ) = X(g, 6 )X (@ +T, 6) L (c®)
) TV o Yo

Let

6 =6 + NT (ce6)
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[

then

X(g, eo)

11

From (C3)

X@, 6)
o
Substituting relation (C8;

x(g) =

N
X(@ - NT, g )X (g + T, g) cn
O o] O

N
X +0,6))X @G +T,¢8) (C8)
o] O O [¢]

into egquation (C2) yields:

N
X(6 +0, 6)X (g + T, 8 )%
(o} (o) (o] (0]

6

+X@ +0,8)0K@ +T, ) f XY, 6 )DC)u(Ddr  (C9)
o] o] O (o] (o]

Lemma: If D{g) =

be written

Mg + T) and

6

(o]

u(@) u(@ + T) the solution (C9) can

. N
N k
x(@) =X©® +0,6)Cx + X(@ + 0, 6) ( E C ) I
o o) o o o 1
k=1
8 +o
°©
+ X(6_ + o0, 6) .I. X 7 (1, 6 )D(n)u(r)art (c10)
o o o
8
o
where , C=X(@ +T,06) (c11)
o o
9°+T_1
11 = f X {r, GO)D(T)u(T)dT (C12)

]

(o]




8

6

+T

o
Proof : -{ X—l(1, QO)D(T)G(T)dT = -f X 1(q, GO)D(T)u(T)dT

0
o

+ o e o0 +

+

0
o

6

8

+

9]

6
o

r2T
o

-1
X T, 5(59(1)U(1)d1 +

T

© +NT
2

X "(:, QO)D(T)u(T)dT

6 +(N-1)T
o

E

X—l(r, eo)D(T)u(I)dT .

+NT

By simple changes of variable in eachk integral obtain

f x? (1, 6 )D(Pu(r)dr = J/
o

e

0

)

(see page 59)

- 58 =

5 +T
» O

X1 (1, QO)D(T)Q(T)dT +

,7in




g +T
°
+ J‘ X "(t+7, QO)IJ(T)u('L)dI 1
e

(0]

g +T
° 1
+ esoe + f X (¢ + (N - 1T, GO)D(T)u(T)dT
r,_1\0

g-NT
+ Jﬁ X-i(r + NT, QO)D(T)U(T)dT

6
o

Use X(1 + NT, 90) = X(g, GO)XN(QO + T, 90) shown above to obtain

- -N -
Xl +NT, 8) =X @ +T, 80X 1, 8)
(@] O 0O (o]

6 90+T
fx'l(f, 6_)D(1) u(r)dt = J X1 (r, 6, )D(D)ul)d1
¢ 6
O O
g +T
-1 ° -1
+ X" +T,8) f X "(t, 8 )D(tha (t)dt +
O (o] 0
60
6 +T
(o]

R O AN R RN
6

o

+0

-N £ -1
+X (@ +T,06) f X (v, 8 Jb(t)u(r)dq
(o] (o] (o)
6O

~ 59 =




Introducce this last relationship into equation (C9) and simplify
to obtain expressions (Cl10) through (C12)., Thus arec proven expressions
(36) and (37) of the basic tert,

Lemma: If D(E) = DB + T) aond u@@) = u(@ + MI) where M is an

integer the solution (equation (C9)) can be written

r-1
x{g) = X _ + 0, 6 )CNx + X6 + o, 0 )( E CN—kM) 1
o o o) o) o 2
k=0
g-rMT
N~ -
s x@_ + 0, 6 )" f e, 0 )D(unas (13
6
(]
where C=X@ + T, 8 ) (C14)
[e] O
6 +MT
-O —1
I, =J e, 8 )D(0u (AT (c15)
e
(8]
r 1is an integer such that rM < N < (r + 1)M (c16)
e e +MT
-1 ° -1
Proof: f X (7, eo)D(T)u (v)dt = f X (1, QO)D(T)U(T)GT + ees oo
% . %
6 +rMT [a]
° -1 -1
e+ X1 e, 6 DU + f X (x, 8)D(Du(ndr .
6 +(r-1)MT 8 +rMT
(o] O
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where r is described by equation 1Z16) and N is still the
largest number of integer values onf T in A . Again use simple

variable changes in the integrals to obtain

6 80+MT
J.X—l(f, GO)D(T)U(T)GT = J. X—l(T, QO)D(r)u(f)df t eeoes
o

g
o o

90+MT
veese t .I‘ X-I(T + (r - 1)MT, GO)D(T)H(T)dT +
)

o
6-~rMT

+ f X1t + o, 8 _)D()ul dr

¢

O

- =N -1
Again X 1(1 + NI, 86 )=X"( +T,06 )X (1, 6), so that
o o o o

8 90+MT
J.X-I(T, QO)D(T)u(T)dT = Jﬂ X-l(T, QO)D(T)U(T)dT +
6 A
o O
€ +MT
-M o -1
+ X e +7T, 8) f XL (r, 8 )D(u(DdT +
0 (0] o}
0
(o]
60+MT
b XEDMG 6 f X (1, 9 )D(Du(D)dr +
o) (o] (o]
8
O

(see page 62)
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G=r\T
e +T,6) .I. X_l(f, g Ib(Hulddr .
(9] (0] O

g
0

-rM
+ X

Substitution into eguation (C9) and simplification yvields relations
(€13) threough (C13). Thus equations (39) and (40) of the basic
text are proven,

lenma: If D) =D + T) and u(@) = u( + P) where P # MI for
M=0, 1, 2, v...., then define K such that KP = MT, where K

and M are both integers. Thean x(8) may be approximated by:

r-1
N ~-kM
x(6) = X(6_ + 0, 6 )C x_+ X8 +o,e)( cNk)l
be o) o) o e} 3
k==0
8-rKP
N-rM -
+ X(SO + g, GO)C * f X l(T, QU)D(T)U(T)"JT (c17)
6
O
where C = X(Go + T, 90)
KP = MT, rKP < NT - (r - 1)KP (C19)
6 +KP
°
o { N (T, GO)D('r)u('r)dr (C20)
g

(%)
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Proof: The proof of relationships (C17) through (C20} follows

the proof for relationships (C13) through (C16) directly,

BT



APPENDIX D. THE I-MATRIX

The sampled-data solution defined by equation (73), that is
N -1 -1, . .
x(2nN) = P(O)J P (O)XO + P(O)SP " (0)1I (D1)

is (except for the I-matrix) composed of matrices whose closed forms are
given in “he main body of the text. The I-matrix, representing tle

integral (over 2m) of the disturbance, is in analytic form

~2 1 v e
I = &/' X “(1,0)D(t)u(r)dr. (D2)
0 < . N

. For the case of disturbances constant in the rotating refererice fr‘ame,

that is disturbances of the form

u(@) = | 3y
a

n

the I-matrix has been computed in cldsed form. The techniqde eﬁployedq

in this calculation was primarily one of contour integratioh. The result

is: _ R K ' - Y o
( n(4-~ e) a : . ‘ \
C-ea-H2 o T
2 2 -
3ent(e” + 2e + 2) a 4 6en A
a-ed - ea)s,/2 £ d- e)(1 - ez)2 n
1 = ._l? | - . | s (D4) .
k/p :r(ez‘ + 10e + 4) a ' . e _ a
-] a-fa-AHYEE a-eofa-éH 0
’~3n(e? - 2e - 2) a . -
Q- )52 o o
\ - o/

-'64-,

g o
- B T



Moo

- Mg

S Feanlblpists, T o ank o P
.

(@)

where p 1is the semilatisrectum of the reference (nominal) ellipse,

K
where 1

k is the gravitational field constant, and

¢ 1s the eccentricity of the reference ellipse.

For disturbances of the form

C and

-1

€2

u(g) =

and K9 are integers,

are complex constants,

the I-matrix becomes

/

2 + e)

G+t - G795

: 1 N -
e2)3/2 {3ef3 B f4}

(1 -e)a -

]

e(l = e)2 1

- 2 +e)f, +———xf

1 — {3ef3—[1—(1:e)2h-Ae2‘]f4}

(3 + e)

1 (1 +e) 72

where p, k, and e are as defined in the previous case, and

f

1

§ - 7

‘16e(l~-e

7 6 .2 5 2
+ 4(K§ Kz)zl_e 2e(7K2 2)z1 - 4(K2+9K2~12)Zl - 2e(K2-?0)Z

2.5/

2

]

/ K, - . K -4 T
. 2.2 1 3 2 N -
-{332c1(l_e ) KlZ - e gzzl [e(K +K )Z1 .

N

1. 2 2

VY

1

CoN.3 2 T T2
4(K§-9K ,12)21 + 2e_(7K2+2)Z1”+ 4(1<§+1<z)z1 + e(Kz-fKZ)%}
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(D6)

(D7)




K K
2
_’fz_{chzl—czz} (D8)

e 1111 2”1

K. - K_~2
7 2 1 4 2 2 .4
z z -47°- r
5373 {2‘3 c 2, (K 41K)+JC2K21 e K221
4e(i-e)
(D9)
3 2.2 2
+ 1e(K,~1)Z] + 4(a-2e)Z] - e(K,+1)Z) - €K, ]}
K K '—
27 1 . : 2. ,
5 {clzl (1+Kllanll+JK1n) + e K8+ cy2 (Jlnlzll 70)
l-e
+ je. S (K)b 4 2L c+2(l+e)[JcKS(h) ¢ S (K.)]
2722 1+e 1 17172 272 "2
K -4 ; ‘ :
7 3 1 3 2..,2 6
- 5573 {e c 2" <[(8e+4e ) ¥1-e” JL(K]-3K, +2)Z;
(l-e )
- @-s)zt ¢ (Be3k 420727 + [2 - 2Q-62)?) L K, )z
1 1 177 1
2 5 2 3 2
- -12)z° - ~9K_=12)Z" vA
(K[+9K ~12)2Z - (K -9K =12)Z0 + (K +K )Z ] + (010)

4 e - (e2e)N1-e2] [(Ki+Kl)Z$ - (141(1-4)z‘1S - (2K§-4o)zi

. (14K1*4);§ + (2K )] + [24e(1-¢”)] [(Kl-z>z‘15 | - |

-9 Ky=d 2 2 :
- (2_1(1-2)2 - K.Z ]) - j4c2(1-e")x Z ([(4+2e ) Y1-e f

11 271

S ..3 | 2 2 2 4
- - 4] [_e(Kz-l)Zl -—e(K2+1)le + [(1+2e )_\,1-e -1] [e K2,

+ (4—8e2)Z? - esz])}




r-1

r! k r~k k Jr=k k r-k

= - - -Z -2 -

51 2 ; oo el 1548 2,2, o (1-2Z,)
k=0

(D11)
: 7 -1 7 -1
k r-k r 1 r 2
+ 22(-Z2) } + lel_l < 7 )-' Zz (__Z—_—)
1 2
oQ
(2K) ! je\2KH
8, (%)) = 2k 2 2 X
! 2
_-— 277 (k!) (2k+1)
, K. -2k+1
oxs1 ¢ 22-1)2KtL (g 72 0747 )2KFlg L
1 d 1 1 (D12)
(2k+1). 2k+1 2k+2 ,_ 2k+2 '
] dz e (z-2.) ,
2 Z=2Z
1
2k~K 2 . 2k+l 2 2k+1
) 1 g 1 /[ (2°-1) (zlz -2z+zl)
(2k-K.)! 2k-K 2 . 2k+2 !
17" 42 1 _ (ezZ”+2Z+e) 70
K1§2k

N
|

1 -%f'(l - Jl S T : (D13)

z _-—‘—-1é—<1+41—_e2) - (D14)

The infinite series S2 in the f3 term above arises in the evalua-

tion of

1 2 sinulkr JK7
SZ(K) = T4xn k/; (1 + e cos 1) ¢ dr (P15)

e sin 17 (1L - Z1 cos 1) '
where ) = 1T+ o coslr . , (D16)
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An approximation to this integral can be made by observing that

2 2 3
» = e sint [1 - (Z1+e) cosr + e(Zl+e) cos ¢ - e (Zl+e)cos T 4+ e.es ] (D17)
and
~1 1 3 2k)! 2k+1
sin A=At A toeees + 5 (2k) A + oeos . (D18)

2 k(k:)2(2k+1)

Since Zl and e are of the same order of magnitude, ) may be
approximated to whatever accuracy desired by cutting off the series and

) 5
discarding similar powers of e in xa, % , etc. Term by term integration

can then be accomplished on the unit circle,
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